Simplifying the Expression: (a+b+c)^2-(b+c-a)^2+(c+a-b)^2-(a+b-c)^2
This article will explore the simplification of the expression: (a+b+c)^2-(b+c-a)^2+(c+a-b)^2-(a+b-c)^2. We will utilize algebraic manipulations to arrive at a simplified form.
Expanding the Squares
First, let's expand each of the squared terms using the formula (x + y)^2 = x^2 + 2xy + y^2:
- (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc
- (b+c-a)^2 = b^2 + c^2 + a^2 + 2bc - 2ab - 2ac
- (c+a-b)^2 = c^2 + a^2 + b^2 + 2ac - 2ab - 2bc
- (a+b-c)^2 = a^2 + b^2 + c^2 + 2ab - 2ac - 2bc
Substituting and Simplifying
Now, let's substitute these expanded forms back into the original expression:
(a^2 + b^2 + c^2 + 2ab + 2ac + 2bc) - (b^2 + c^2 + a^2 + 2bc - 2ab - 2ac) + (c^2 + a^2 + b^2 + 2ac - 2ab - 2bc) - (a^2 + b^2 + c^2 + 2ab - 2ac - 2bc)
Notice that many terms cancel out:
- a^2, b^2, c^2 cancel out
- 2bc cancels out
- -2ab cancels out
- -2ac cancels out
This leaves us with:
2ab + 2ac + 2bc + 2ab + 2ac + 2bc
Final Result
Combining like terms, we arrive at the simplified expression:
**(a+b+c)^2-(b+c-a)^2+(c+a-b)^2-(a+b-c)^2 = ** 4ab + 4ac + 4bc
Therefore, the original expression simplifies to 4ab + 4ac + 4bc.